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Abstract

In order to respond correctly to a free form factual question given a large collection
of text data, one needs to understand the question to a level that allows determining
some of the constraints the question imposes on a possible answer. These constraints
may include a semantic classification of the sought after answer and may even suggest
using different strategies when looking for and verifying a candidate answer. This work
presents the first work on a machine learning approach to question classification. Guided
by a layered semantic hierarchy of answer types, we develop a hierarchical classifier that
classifies questions into fine-grained classes.

This work also performs a systematic study of the use of semantic information sources in
natural language classification tasks. It is shown that, in the context of question classifica-
tion, augmenting the input of the classifier with appropriate semantic category information
results in significant improvements to classification accuracy. We show accurate results on
a large collection of free-form questions used in TREC 10 and 11.

1 Introduction

Open-domain question answering (Lehnert 1986; Harabagiu et al. 2000) and story
comprehension (Hirschman et al. 1999) have become important directions in nat-
ural language processing. The purpose of the question answering (QA) task is to
seek an accurate and concise answer to a free-form factual question' from a large
collection of text data, rather than a full document, judged relevant as in standard
information retrieval tasks. The difficulty of pinpointing and verifying the precise
answer makes question answering more challenging than the common information

i This)paper combines and extends early works in (Li and Roth 2002; Li, Small, and Roth
2004).

1 Research supported by NSF grants 11S-9801638 and ITR IIS-0085836 and an ONR
MURI Award.

L It does not address questions like ‘Do you have a light?’, which calls for an action, but
rather only ‘What’, ‘Which’, ‘Who’, ‘When’, ‘Where’, ‘Why’ and ‘How’-questions that
ask for a simple fact.
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retrieval task done by search engines. This difficulty is more acute in tasks such
as story comprehension in which the textual resources are more confined and the
target text is less likely to exactly match text in the questions. For this reason, ad-
vanced natural language techniques rather than key term extraction and expansion
are needed.

Recent works (Hovy et al. 2001; Moldovan et al. 2002; Roth et al. 2002) have
shown that locating an accurate answer hinges on first filtering out a wide range of
candidates based on some categorization of answer types given a question. Specifi-
cally, this classification task has two purposes. First, it provides constraints on the
answer types that allow further processing to precisely locate and verify the answer.
For example, when considering the question

Q: What Canadian city has the largest population?,
we do not want to test every noun phrase in a document to see whether it provides
an answer. The hope is, at the very least, to classify this question as having answer
type city, implying that only candidate answers that are cities need consideration.

Second, it provides information that downstream processes may use in determin-
ing answer selection strategies that may be answer type specific. Besides the former
example, the following examples also exhibit several aspects of this point:

Q: What is a prism?
Identifying that the target of this question is a definition, strategies that are
specific for definitions (e.g., using predefined templates like: A/The prism is... or
Prisms are...) may be useful. Similarly, in:

Q: Why is the sun yellow?
Identifying that this question asks for a reason, may lead to using a specific
strategy for reasons.

Moreover, question classification would benefit question answering process further
if it has the capacity to distinguish between a large and complex set of finer classes.
A question classifier must take all of these into account and produce predictions
appropriate for the downstream needs.

One way to exhibit the difficulty in manually building a question classifier (Harabagiu
et al. 2000; Hermjakob 2001; Hovy et al. 2001) is to consider the reformulations of
a single query:

What tourist attractions are there in Reims?

What are the names of the tourist attractions in Reims?
What do most tourists visit in Reims?

What attracts tourists to Reims?

What is worth seeing in Reims?

All these reformulations target at the same answer type Location. However, dif-
ferent words and syntactic structures make it difficult for a manual classifier based
on a small set of rules to generalize well and map all of these to the same answer
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type. This remains true even if external knowledge bases (e.g. WordNet (Fellbaum
1998)) are exploited to partially automate the mapping from word-level informa-
tion to question classes (Harabagiu et al. 2000; Hermjakob 2001). State-of-the-art
learning methods with appropriate features, on the other hand, may utilize the
large number of potential features (derived from syntactic structures and lexical
semantic analysis) to generalize and classify these cases automatically. By com-
bining features from the same context, learning is also more robust to word sense
ambiguity problem that might occur in the mapping.

This work develops a machine learning approach to question classification (QC) (Li
and Roth 2002; Li, Small, and Roth 2004). The goal is to categorize questions into
different semantic classes based on the possible semantic types of the answers. We
develop a hierarchical classifier guided by a layered semantic hierarchy of answer
types that makes use of a sequential model for multi-class classification (Even-Zohar
and Roth 2001) and the SNoW learning architecture (Carlson et al. 1999). We sug-
gest that it is useful to consider this classification task as a multi-class classification
and find that it is possible to achieve good classification results despite the fact that
the number of different labels used is fairly large, 50 fine-grained semantic classes.

At a high level, question classification may be viewed as a text categorization
task (Sebastiani 2002). However, some characteristics of question classification make
it different from the common task. On one hand, questions are relatively short and
contain less word-based information compared with classifying the whole text. On
the other hand, short questions are amenable for more accurate and deeper-level
analysis. Our approach is, therefore, to augment the questions with syntactic and
semantic analysis, as well as external semantic knowledge, as input to the text
classifier.

In this way, this work on question classification can be also viewed as a case
study in applying semantic information in text classification. This work systemat-
ically studies several possible semantic information sources and their contribution
to classification. We compare four types of semantic information sources that differ
in their granularity, the way they are acquired and their size: (1) automatically
acquired named entity categories, (2) word senses in WordNet 1.7 (Fellbaum 1998),
(3) manually constructed word lists related to specific categories of interest, and
(4) automatically generated semantically similar word lists (Pantel and Lin 2002).

Our experimental study focuses on (1) testing the performance of the classifier in
classifying questions into coarse and fine classes, and (2) comparing the contribu-
tion of different syntactic and semantic features to the classification quality. In the
experiments, we observe that classification accuracies over 1,000 TREC (Voorhees
2002) questions reach 92.5 percent for 6 coarse classes and 89.3 percent for 50 fine-
grained classes, state-of-the-art performance for this task. We also observe that
question classification is a indeed feature-dependent task and that semantic infor-
mation is essential in order to achieve this level of accuracy. An error reduction
of 28.7 percent can be achieved when semantic features are incorporated into the
fine-grained classification.

The paper is organized as follows: Sec. 2 presents the question classification prob-
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lem; Sec. 3 discusses the learning issues involved in QC and presents our learning
approach; Sec. 4 explains how the sources of semantic information are incorporated
as features and describes all the features defined in this task. Sec. 5 presents our
experimental study and results. Related work is summarized in Sec. 6. In Sec. 7 we
conclude by discussing a few issues left open by our study.

2 Question Classification

Many important natural language inferences can be viewed as problems of resolving
ambiguity, either syntactic or semantic, based on properties of the surrounding
context. These are typically modeled as classification tasks (Roth 1998). Examples
include part-of-speech tagging where a word is mapped to its part-of-speech tag in
the context of a given sentence, context-sensitive spelling correction where a word
is mapped into a similarly spelled word that is appropriate in the context of the
sentence, and many other problems like word-sense disambiguation, word choice
selection in machine translation and identifying discourse markers.

Similarly, we define Question Classification (QC) here to be the multi-class clas-
sification task that seeks a mapping g : X — {c1,...,c,} from an instance z € X
(e.g., a question) to one of n classes ci, ..., ¢,. This classification provides a seman-
tic constraint on the sought-after answer. The intention is that this classification,
potentially with other constraints on the answer, will be used by a downstream
process to select a correct answer from several candidates.

Earlier works have suggested various standards of classifying questions. Wendy
Lehnert’s conceptual taxonomy (Lehnert 1986), for example, proposes about 13
conceptual classes including causal antecedent, goal orientation, enablement, causal
consequent, verification, disjunctive, and so on. However, in the context of factual
questions that are of interest to us here, conceptual categories do not seem to be
helpful; instead, our goal is to semantically classify questions, as in some earlier
work (Harabagiu et al. 2000; Singhal et al. 2000; Hermjakob 2001). The key differ-
ence, though, is that we attempt to do that with a significantly finer taxonomy of
answer types; the hope is that with the semantic answer types as input, one can eas-
ily locate answer candidates, given a reasonably accurate named entity recognizer
for documents.

For example, in the next two questions, knowing that the targets are a city or a
country will be more useful than just knowing that they are locations.

Q: What Canadian city has the largest population?
Q: Which country gave New York the Statue of Liberty?

2.1 Question Hierarchy

We define a two-layered taxonomy, which represents a natural semantic classifica-
tion for typical answers. The hierarchy contains 6 coarse classes (ABBREVIATION,
DESCRIPTION, ENTITY, HUMAN, LOCATION and NUMERIC VALUE) and
50 fine classes. Table 1 demonstrates the distribution of these classes in the 1,000
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questions taken from TREC (Text Retrieval Conference (Voorhees 2002)) 10 and 11,
used for our experimental evaluation. Each coarse class contains a non-overlapping
set of fine classes. The motivation behind adding a level of coarse classes is that of
compatibility with previous work’s definitions, and comprehensibility.

Class 7# | Class #
ABBREVIATION 18 term 19
abbreviation 2 vehicle 7
expression 16 word 0
DESCRIPTION 153 HUMAN 171
definition 126 group 24
description 13 individual 140
manner 7 title 4
reason 7 description 3
ENTITY 174| LOCATION 195
animal 27 city 44
body 5 country 21
color 12 mountain 5
creative 14 other 114
currency 8 state 11
disease/medicine 3 NUMERIC 289
event 6 code 1
food 7 count 22
instrument 1 date 146
lang 3 distance 38
letter 0 money 9
other 19 order 0
plant 7 other 24
product 9 period 18
religion 1 percent 7
sport 3 speed 9
substance 20 temp 7
symbol 2 vol.size 4
technique 1 weight 4

Table 1. Distribution of 1,000 TREC questions over the question hierarchy. Coarse
classes are in bold and are followed by their refinements into fine classes. # is the
number of questions in each class. The questions were manually classified by us.

2.2 The Ambiguity Problem

One difficulty in the question classification task is that there is no completely clear
boundary between classes. Therefore, the classification of a specific question accord-
ing to our class hierarchy can still be ambiguous although we have tried to define
it as clearly as possible. Consider questions:
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1. What is bipolar disorder?
2. What do bats eat?
3. What is the PH scale?

Question 1 could belong to definition or disease/medicine; Question 2 could
belong to food, plant or animal; and Question 3 could be a NUMERIC:other
(nontypical numeric value) or a definition. It is hard to categorize these questions
into one single class and it is likely that mistakes will be introduced in the down-
stream process if we do so. To avoid this problem, we allow our classifiers to assign
multiple class labels for a single question in the question answering system. This
strategy is better than only allowing one label because we can apply all the classes
in the later precessing steps without loss. For the purpose of evaluation, however,
only the top-ranked coarse and fine class are counted as correct.

3 Learning a Question Classifier

In our work, a question can be mapped to one of 6 possible coarse classes and one
of 50 fine classes (We call the set of possible class labels for a given question a
confusion set).

One difficulty in supporting fine-grained classification of this level is the need to
extract from the questions finer features that require syntactic and semantic analysis
of questions. As a result, existing non-learning approaches, as in (Singhal et al.
2000), have adopted a small set of simple answer entity types, which consist of the
classes: Person, Location, Organization, Date, Quantity, Duration, Linear_Measure.
Some of the rules used by them in classification were of the following forms:

e If a query starts with Who or Whom: type Person.

e If a query starts with Where: type Location.

e If a query contains Which or What, the head noun phrase determines the
class, as for What X questions.

Although the manual rules may have large coverage and reasonable accuracy over
their own taxonomy, confined by the tedious work on analyzing a large number of
questions and the requirements of an explicit construction and representation of
the mapping from questions to classes, most earlier question answering systems,
therefore, can only perform a coarse classification for no more than a fairly small
set (e.g. 20 classes). It is not sufficient to support fine-grained classification, nor to
handle an even larger set of question types that we can anticipate in an interactive
scenario.

On the contrary, learning technologies can solve these difficulties easily. In our
learning approach, one can define only a small number of ‘types’ of features based
on previous syntactic and semantic analysis results, which are then expanded in a
data-driven way to a potentially large number of features, relying on the ability of
the learning process to handle it. In addition to this advantage, a learned classifier
is more flexible to reconstruct than a manual one because it can be trained on a
new taxonomy in a very short time.
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3.1 A Hierarchical Classifier

To adapt to the layered semantic hierarchy of answer types, we develop a hierarchi-
cal learning classifier based on the sequential model of multi-class classification, as
described in (Even-Zohar and Roth 2001). The basic idea in this model is to reduce
the set of candidate class labels for a given question step by step by concatenating
a sequence of simple classifiers. The output of one classifier - a set of class labels
- is used as input to the next classifier. In order to allow a simple classifier to
output more than one class label in each step, the classifier’s output activation is
normalized into a density over the class labels and is thresholded.

The question classifier is built by combining a sequence of two simple classifiers.
The first classifies questions into coarse classes (Coarse Classifier) and the second
into fine classes (Fine Classifier). Each of them utilizes the Winnow algorithm
within the SNoW (Sparse Network of Winnows (Carlson et al. 1999)) learning
architecture. SNoW is a multi-class learning architecture that is specifically tailored
for large scale learning tasks (Roth 1998). It learns a separate linear function over
the features for each class label based on a feature efficient learning algorithm,
Winnow (Littlestone 1989). It is suitable for learning in NLP-like domains and
robust to a large feature space where the number of potential features is very large,
but only a few of them are active in each example, and only a small fraction of
them are relevant to the target concept.

A feature extractor automatically extracts the same features for both classifiers
based on multiple syntactic, semantic analysis results and external knowledge of the
question. The second classifier depends on the first in that its candidate labels are
generated by expanding the set of retained coarse classes from the first into a set
of fine classes; this set is then treated as the confusion set for the second classifier.
Figure 1 shows the basic structure of the hierarchical classifier. During either the
training or the testing stage, a question is processed along one single path top-down
to get classified.

The detailed classification process can be formally explained by the following
scenario: The initial confusion set of any question ¢ is Cy = {¢1,¢a,...,¢pn}, the set
of all the coarse classes. The coarse classifier determines a set of preferred labels,
Cy = Coarse_Classifier(Co,q), C1 C Cy so that |C1] < 5 (5 is chosen through
experiments). Then each coarse class label in Cy is expanded to a fixed set of fine
classes determined by the class hierarchy. That is, suppose the coarse class c; is
mapped into the set ¢, = {fi1, fiz,..., fim} of fine classes, then Cy = Uciec1 ch.
The fine classifier determines a set of preferred labels, C3 = Fine_Classifier(Ca, q)
so that C3 C C and |C3| < 5. Cy and C5 are the ultimate outputs from the whole
classifier.

3.2 Decision Model

For both the coarse and fine classifiers, the same decision model is used to choose
class labels for a question. Given a confusion set and a question, SNoW outputs a
density over the classes derived from the activation of each class. After ranking the



8 Li and Roth

C0 ABBR, ENTITY,DESC,HUMAN,LOC,NUM

l Coarse Classifier

ABBR, ENTITY, 1

ENTITY HUMAN oo BESS |

Map coarseclasses ' _ _ 4 o _ _ o o e e o @ e e 1
to fine classes i _x

abb, animal, e
plant... food, ind, ... def, reason,...

|
C, \I /

l Fine Classifier

Fig. 1. The hierarchical classifier

classes in the decreasing order of density values, we have the possible class labels
C ={c1,¢o,...,cn}, with their densities P = {p1,pa,...,ppn} (where, Y I | p; =1,
0<p; <1,1<i<n). As discussed earlier, for each question we output the first
k classes (1 < k <5), c1,¢a,...c, where k satisfies,

t
(1) k= min(argmint(Zpi >T),5)
i=1
T is a threshold value in [0,1] and 7" = 0.95 is chosen through experiments. If
we treat p; as the probability that a question belongs to class 4, the decision model
yields a reasonable probabilistic interpretation. We are 95 percent sure that the
correct label is inside those k classes.

4 Features in Question Classification

Machine Learning based classifiers typically take as input a feature-based represen-
tation of the domain element (e.g., a question). For the current task, a question
sentence is represented as a vector of features and treated as a training or test ex-
ample for learning. The mapping from a question to a class label is a linear function
defined over this feature vector.

In addition to the information that is readily available in the input instance, it is
common in natural language processing tasks to augment sentence representation
with syntactic categories — part-of-speech (POS) and phrases, under the assump-
tion that the sought-after property, for which we seek the classifier, depends on
the syntactic role of a word in the sentence rather than the specific word (Roth
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1998). Similar logic can be applied to semantic categories. In many cases, the prop-
erty does not seem to depend on the specific word used in the sentence — that
could be replaced without affecting this property — but rather on its ‘meaning’ (Li,
Small, and Roth 2004). For example, given the question: What Cuban dictator
did Fidel Castro force out of power in 19587, we would like to determine
that its answer should be a name of a person. Knowing that dictator refers to a
person is essential to correct classification.

In this work, several primitive feature types are derived from multiple sources of
syntactic and lexical semantic analysis of questions, each of which in itself could be a
learning process, described later in this section. Over these primitive feature types,
a set of operators is used to compose more complex features, such as conjunctive (n-
grams) and relational features. A simple script that describes the ‘types’ of features
used, (e.g., conjunction of two consecutive words and their POS tags) is written and
the features themselves are extracted in a data driven way. Only ‘active’ features
(that is, the binary features with ‘true’ values in the current example) are listed in
our representation so that despite the large number of potential features, the size
of each example is small.

The learning architecture we use allows a multi-class classifier to handle a rela-
tively huge feature space (in our case, the dimension of the feature space is above
200, 000), laying a foundation for the feature-enriched classification strategy.

4.1 Syntactic Features

In addition to words, the syntactic features for each question include POS tags,
chunks (non-overlapping phrases in a sentence as defined in (Abneyl991)), head
chunks (e.g., the first noun chunk and the first verb chunk after the question word
in a sentence).

Part-of-speech information of the words in a question is annotated by a POS
tagger (Even-Zohar and Roth 2001) that also makes use of the sequential model
to restrict the number of competing classes (POS tags) while maintaining, with
high probability, the presence of the true outcome in the candidate set. It achieves
state—of-the—art results on this task and is more efficient than other part-of-speech
taggers. Chunks and head chunks of a question are extracted by a publicly avail-
able shallow parser described in (Punyakanok and Roth 2001) 2. The preference
of shallow processing over full parsing is due to the consideration of the poten-
tial application of question answering in an interactive environment which requires
high robustness with noisy input. The following example illustrates the information
available when generating the syntax-augmented feature-based representation.

Question: Who was the first woman killed in the Vietnam War?

POS tagging: [Who WP] [was VBD] [the DT] [first JJ] [woman NN] [killed

2 All of these tools are freely available at http://L2R.cs.uiuc.edu/~cogcomp/ .
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VBN] [in IN] [the DT] [Vietnam NNP] [War NNPJ [? .]

Chunking: [NP Who] [VP was] [NP the first woman/ [VP killed] [PP in] [NP
the Vietnam War| ¢

The head chunks denote the first noun and the first verb chunk after the question
word in a question. For example, in the above question, the first noun chunk after
the question word Who is ‘the first woman’.

4.2 Semantic Features

Similarly to syntactic information like part-of-speech tags, a fairly clear notion of
how to use lexical semantic information is: we replace or augment each word by its
semantic class in the given context, generate a feature-based representation, and
then learn a mapping from this representation to the sought-after property. This
general scheme leaves open several issues that make the analogy to syntactic cat-
egories non-trivial. First, it is not clear what the appropriate semantic categories
are and how to acquire them. Second, it is not clear how to handle the more diffi-
cult problem of semantic disambiguation when augmenting the representation of a
sentence.

For the first problem, we study several lexical semantic information sources that
vary in their granularity, the difficulty to acquire them and the accuracy within
which they are acquired. The information sources are: (1) named entities, (2) word
senses in WordNet (Fellbaum 1998), (3) manually constructed word lists related to
specific answer types and (4) automatically-generated semantically similar words
for every common English word based on distributional similarity. All the sources
are acquired by external semantic analysis tools.

For the second problem above, in all cases, we define semantic categories of words
and incorporate the information into question classification in the same way: if a
word w occurs in a question, the question representation is augmented with the
semantic category(ies) of the word. For example, in the question: What is the state
flower of California ? given that plant (say) is the only semantic class of flower, the
feature extractor adds plant to the question representation.

Clearly, a word may belong to different semantic categories in different contexts.
For example, the word water has the meaning liquid or body of water in different
sentences. Without disambiguating the sense of a word we cannot determine which
semantic category is more appropriate in a given context. At this point, our solution
is to extract all possible semantic categories of a word as features, without disam-
biguation, and allowing the learning process to deal with this problem, building on
the fact that the some combinations of categories are more common than others and
more indicative to a specific class label. As we show later, our experiments support
this decision, although we have yet to experiment with the possible contribution of
a better way to determine the semantic class in a context sensitive manner.
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Named Entities

A named entity (NE) recognizer assigns a semantic category to some of the noun
phrases in the question. The scope of the categories used here is broader than the
common named entity recognizer. With additional categories such as profession,
event, holiday, plant, sport, medical etc., we redefine our task in the direction of
semantic categorization. The named entity recognizer was built on the shallow
parser described in (Punyakanok and Roth 2001), and was trained to categorize
noun phrases into one of 34 different semantic categories of varying specificity. Its
overall accuracy (Fjg=1) is above 90 percent. For the question Who was the woman
killed in the Vietnam War ¢, the named entity tagger will get: NE: Who was the
[Num first] woman killed in the [Event Vietnam War] ¢ As described above, the
identified named entities are added to the question representation.

WordNet Senses

In WordNet (Fellbaum 1998), words are organized according to their ‘senses’ (mean-
ings). Words of the same sense can, in principle, be exchanged in some contexts.
The senses are organized in a hierarchy of hypernyms and hyponyms. Word senses
provide another effective way to describe the semantic category of a word. For ex-
ample, in WordNet 1.7, the word water belongs to five senses. The first two senses
are:

Sense 1: binary compound that occurs at room temperature as a colorless
odorless liquid;
Sense 2: body of water.
Sense 1 contains words {H20, water} while Sense 2 contains {water, body of
water}. Sense 1 has a hypernym (Sense 3: binary compound); and Sense 2 has a
hyponym (Sense 4: tap water).

For each word in a question, all of its sense IDs and direct hypernym and hyponym
IDs are extracted as features.

Class-Specific Related Words

Each question class frequently occurs together with a set of words which can be
viewed as semantically related to this class. We analyzed about 5, 500 questions and
manually extracted a list of related words for each question class. These lists are
different from ordinary named entity lists in a way that they cross the boundary of
the same syntactic role. Below are some examples of the word lists.

Question Class: Food
{alcoholic apple beer berry breakfast brew butter candy cereal champagne cook
delicious eat fat feed fish flavor food fruit intake juice pickle pizza potato sweet taste

)

Question Class: Mountain
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{hill ledge mesa mountain peak point range ridge slope tallest volcanic vol-
cano...}

The question class can be viewed as a ‘topic’ tag for words in the list, a type
of semantic categories. It is a semantic information source similar to the keyword
information used in some earlier work (Harabagiu et al. 2000; Hermjakob 2001).
The difference is that they are converted into features here and combined with other
types of features to generate an automatically learned classifier.

Distributional Similarity Based Categories

The distributional similarity (Lee 1999) of words captures the likelihood of them
occurring in identical syntactic structures in sentences. Depending on the type of
dependencies used to determine the distributional similarity, it can be argued that
words with high distribution similarity have similar meanings. For example, the
words used in the following syntactic structures are likely to be U.S. states.

.. 's appellate court campaign in ...

... ’s capital governor of ...
.. 's driver’s license illegal in ...
.. 's sales tax senator for ...

Pantel and Lin (Pantel and Lin 2002) proposed a method to cluster words into
semantically similar groups based on their distributional similarity with respect
to a large number of dependencies. They built similar word lists for over 20,000
English words. All the words in a list corresponding to a target word are organized
into different senses. For example, the word water has the following similar words:

Sense 1: {oil gas fuel food milk liquid ...}
Sense 2: {air moisture soil heat area rain snow ice ...}
Sense 3: {waste sewage pollution runoff pollutant...}

One way to apply these lists in question classification is to treat the target word
(in the above example, ‘water’) of a list as the semantic category of all the words
in the list and in line with our general method, and add this semantic category of
the word as a feature.

5 Experimental Study

Our experimental study focuses on (1) testing the performance of the learned clas-
sifier in classifying factual questions into coarse and fine classes, and (2) comparing
the contribution of different syntactic and semantic features to the classification
quality.

Based on the same framework of the hierarchical classifier described before, we
construct different classifiers utilizing different feature sets and compare them in
experiments. The first group of classifiers compared, take as input an incremental
combination of syntactic features (words, POS tags, chunks and head chunks). In
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particular, the classifier that takes as input all the syntactic features is denoted
as SYN. Then, another group of classifiers are constructed by adding different
combinations of semantic features such as NE — named entity features, SemWN
— features from WordNet senses, SemCSR — features based on class-specific words
and SemSWL — semantically similar word lists, to the input of the SYN classifier.

Three experiments are conducted for the above purposes. The first evaluates
the accuracies of the hierarchical classifier for both coarse and fine classes using
only syntactic features. The second evaluates the contribution of different semantic
features (all 15 possible combinations of semantic feature types are added to the
SYN classifier and compared this way.). In the third experiment we hope to find
out the relation between the contribution of semantic features and the size of the
training set by training the classifier with training sets of different sizes.

The 1000 questions taken from TREC (Voorhees 2002) 10 and 11 serve as an
ideal test set for classifying factual questions. 21,500 training questions are col-
lected from three sources: 894 TREC 8 and 9 questions, about 500 manually con-
structed questions for a few rare classes, and questions from the collection pub-
lished by USC (Hovy et al. 2001). In the first two experiments, the classifiers
are trained on all these questions. 10 other training sets with incremental sizes
of 2,000, 4,000, ..., 20,000 questions built by randomly choosing from these ques-
tions are used in the third experiment. All the above questions were manually
labelled according to our question hierarchy, with one label per question accord-
ing to the majority of our annotators. All the of above data sets are available at
http://12r.cs.uiuc.edu/~cogcomp//.

Performance is evaluated by the global accuracy of the classifiers for all the coarse
or fine classes (Accuracy), and the accuracy of the classifiers for a specific class ¢
(Precision]c]), defined as follows:

# of correct predictions

2 4 -
2) ccuracy # of predictions

. # of correct predictions of class c
(3) precison|c] =

# of predictions of class ¢

Note that since all questions are being classified, the global accuracy is identical to
both precision and recall that are commonly used in similar experiments. However,
for specific classes, precision and recall are different because questions of one class
can be predicted as belonging to another. We only show precision|c] for each class
¢ in Table 3) since high accuracy on all classes implies high recall for each specific
class.

Although we allow the decision model to output multiple class labels in each step
for practical application, only one coarse class and one fine class which are ranked
the first by their density values in C; and C5 are counted as correct in evaluation.
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5.1 Experimental Results

All the classifiers are trained on the 21,500 training questions and tested on the
1,000 TREC (Voorhees 2002)) 10 and 11 questions in the experiments except the
case of studying the influence of training sizes.

Classification Performance Using Only Syntactic Features

Table 2 shows the classification accuracy of the hierarchical classifier with dif-
ferent sets of syntactic features in the first experiment. Word, POS, Chunk and
Head(SYN) represent different feature sets constructed from an incremental com-
bination of syntactic features (for example, the feature set Chunk actually contains
all the features in Word, POS and also adds chunks, and Head(SYN) contains all
the four types of syntactic features.). Overall, we get a 92.5 percent accuracy for
coarse classes and 85 percent for the fine classes using all the syntactic features.
The reason for the lower performance in classifying fine classes compared with the
performance on coarse classes is because there are far more fine classes and because
they have less clear boundaries. Although chunks do not seem to contribute to the
classification quality in the experiment using the feature set Chunk, they contribute
to it when combined with head chunks as in Head(SYN). The fact that head chunk
information contributes more than generic chunks indicates that the syntactic role
of a chunk is a factor that can not be ignored in this task.

Classifier Word POS Chunk Head(SYN)

Coarse 85.10 91.80 91.80 92.50
Fine 82.60 84.90 84.00 85.00

Table 2. Classification Accuracy of the hierarchical classifier for coarse and fine
classes using an incremental combination of syntactic features.

Contribution of Semantic Features

Although only minor improvements are acquired (not shown) in classifying ques-
tions into coarse classes after semantic features are added, significant improvements
are achieved for distinguishing between fine classes. Figure 2 presents the accuracy
of the classifier for fine classes after semantic features are input together with the
SYN feature set.

The best accuracy (89.3 percent) for classifying fine classes in this experiment
is achieved using a combination of feature types {SYN, NE, SemCSR, SemSWL}.
This is a 28.7 percent error reduction (from 15 percent to 10.7 percent) over the
SYN classifier. For simplicity, this feature set {SYN, NE, SemCSR, SemSWL} is
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Fig. 2. Classification Accuracy for fine classes after adding different combinations of se-
mantic features to the input of the SYN classifier. Shapes in the graph represent the
four types of semantic feature {NE, SemWN, SemCSR, SemSWL} and a juxtaposition of
symbols represents the use of a combination of different types(in addition to SYN). For
example, 7O denotes that the classifier takes as input a combination of feature types
{SYN, SemCSR, SemSWL}.

denoted as ‘SEM’ in the later experiments. The results reflect that lexical semantic
information has contributed much to fine-grained classification, even without word
sense disambiguation. Furthermore, it takes only about 30 minutes to train the
SEM classifier over 20,000 questions, an indication of the efficiency of the SNoW
learning algorithm.

However, the performance of using all features types is only 88.5 percent. Al-
though WordNet features may contribute to the classification quality by itself, it
hurts when combined with all semantic feature types. This is probably due to the
fact that WordNet features may contribute overlapping information of other fea-
ture types but add more noise. It also indicates that while the number and type
of features are important to the classification quality, using a learning algorithm
that can tolerate a large number of features is also important. In this experiment
we also noticed that the class-specific word lists (SemCSR), and similar word lists
(SemSWL) are the most beneficial sources of semantic information.

Classification Performance vs. Training Size

The relation between classification accuracy of the SYN classifier and the SEM
classifier, and training size, is tested in the third experiment and results are given
in Figure 3. The error reduction from the SYN classifier to the SEM classifier on the
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1,000 TREC questions is stable over 20 percent over all training sizes, also proving
the distinctive contribution of the semantic features in this task.
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——Err. Reduction | 24.04% | 28.62% | 26.41% | 29.55% | 26.29% | 29.03% | 29.23% | 23.69% | 22.08% | 25.54%
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Fig. 3. Classification Accuracy versus training size. ‘SYN’ and ‘SEM’ represent the learning
curves of the SYN classifier and the SEM classifier respectively. ‘Err. Reduction’ denotes
the error reduction from the SYN classifier to the SEM classifier. The training size is
2000 x X and the test set is 1,000 TREC questions.

5.2 Further Analysis

Some other interesting phenomena have also been observed in our experiments.
The classification accuracy of the SEM classifier for specific fine classes is given in
Table 3. It is shown in the graph that the accuracies for specific fine classes are far
from uniform, reflecting difference of classification difficulty. Questions belonging
to desc (description) and Entity:other (uncommon entities) are the most difficult
to identify among all fine classes, since their boundaries with other classes are quite
fuzzy.

A specific metric is defined to evaluate the overlapping degree of question classes.
The tendency that class ¢ is confused with class j (D;;) is defined as follows:

(4) Dij =2 Erri;/(Ni + N;)

If we return exactly one label for each question, Err;; is the number of questions
in class ¢ misclassified as class j. IV; and N; are the numbers of questions in class
i and j separately. Figure 4 is a gray-scale map of the matrix D[n,n]. D[n,n] is so
sparse that most parts of the graph are blank. From this graph, we can see that
there is no good clustering property among the fine classes inside a coarse class.
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Class # Precision|c] | Class #  Precision|c]
abb 2 100% desc 25 36%
exp 17 94.11% manner 8 87.5%

animal 27 85.18% reason 7 85.71%

body 4 100% gr 19 89.47%

color 12 100% ind 154 90.25%

cremat 13 76.92% title 4 100%

currency 6 100% desc 3 100%

dismed 4 50% city 41 97.56%

event 4 75% country 21 95.23%
food 6 100% mount 2 100%

instru 1 100% LOC:other 116 89.65%
lang 3 100% state 14 78.57%

ENTY:other 24 37.5% count 24 91.66%

plant 3 100% date 145 100%

product 6 66.66% dist 37 97.29%
religion 1 100% money 6 100%

sport 4 5% NUM:other 15 93.33%
substance 21 80.95% period 20 85%

symbol 2 100% perc 9 77.77%

termeq 22 63.63% speed 8 100%
veh 7 71.42% temp 4 100%
def 125 97.6% weight 4 100%

TOTAL 1000 89.3%

Table 3. Classification Accuracy for specific fine classes with the feature set SEM. #
denotes the number of predictions made for each class and Precision[c] denotes the
classification accuracy for a specific class c. The classes not shown do not actually
occur in the test collection.

To better understand the classification results, we also split the 1,000 test ques-
tions into different groups according to their question words, that is, What, Which,
Who, When, Where, How and Why questions. A baseline classifier, Wh-Classifier,
is constructed by classifying each group of questions into its most typical fine class.
Table 4 shows the accuracy (defined as #£-2f c;[;efdt - T‘;Zcetsezo%emons) of the Wh-
Classifier and the SEM classifier on different groups of questions. The typical fine
classes in each group and the number of questions in each class are also given.
The distribution of What questions over the semantic classes is quite diverse, and

therefore, they are more difficult to classify than other groups.

From this table, we also observe that classifying questions just based on question
words (1) does not correspond well to the desired taxonomy, and (2) is too crude
since a large fraction of the questions are ‘What questions’.

The overall accuracy of our learned classifier is satisfactory. Indeed, all the refor-
mulation questions that we exemplified at the beginning of this paper have been
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Fig. 4. The gray—scale map of the matrix D[n,n]. The gray scale of the small box in
position (z,7) denotes D;;. The larger D;; is, the darker the box is. The dotted lines
separate the 6 coarse classes.

Question Word  # Wh SEM | Classes(#)

What 598  21.07% 85.79%| ind.(36), def.(126), loc—other(47)
Which 21 3333% 95.24% ind.(7), country(5)

Who 99  93.94% 96.97% | group(3), ind.(93), human desc.(3)
When 96 100%  100% date(96)

Where 66  90.01% 92.42%| city(1), mount.(2), loc-other(61)
How 86  30.23% 96.51% count(21), dist.(26), period(11)
Why 4 100% 100% reason(4)

Total 1000  41.3% 89.3% |

Table 4. Classification Accuracy of the Wh-Classifier and the SEM classifier on
different question groups. Typical fine classes in each group and the number of
questions in each class are also shown by Classes(#).

correctly classified. Nevertheless, it is constructive to consider some cases in which
the classifier fails. Below are some examples misclassified by the SEM classifier.

o  What imaginary line is halfway between the North and South Poles ¢

The correct label is location, but the classifier outputs an arbitrary class. Our
classifier fails to determine that ‘line’ might be a location even with the semantic
information, probably because some of the semantic analysis is not context sensitive.

o  What is the speed hummingbirds fly ?

The correct label is speed, but the classifier outputs animal. Our feature
extractor fails to determine that the focus of the question is ‘speed’. This example
illustrates the necessity of identifying the question focus by analyzing syntactic
structures.
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e What do you call a professional map drawer ?
The classifier returns other entities instead of equivalent term. In this
case, both classes are acceptable. The ambiguity causes the classifier not to output
equivalent term as the first choice.

6 Related Work

In an earlier work (Pinto et al. 2002), a simple question classification system is con-
structed based on language models. More recent works address the question classi-
fication problem using more involved machine learning techniques include (Radev
et al. 2002), (Hacioglu and Ward 2003) and (Zhang and Lee 2003). (Radev et al.
2002) defines a smaller taxonomy and applies the Rappier rule leaning algorithm
with a lot fewer features. (Zhang and Lee 2003) compares several learning algo-
rithms for question classification using the taxonomy developed in an early version
of the work presented here (Li and Roth 2002) and have shown that Support Vec-
tor Machine (SVM) with a tree kernel can achieve performance improvement over
a single-layer SNoW classifier using the same primitive syntactic features. This is
expected, since using tree kernels is equivalent to enriching the feature space with
conjunction features. However, the goal of the work presented here is to show that
a sensible incorporation of semantic features can improve the quality of question
classification significantly.

7 Conclusion and Future Directions

This paper presents a machine learning approach to question classification, mod-
eled as a multi-class classification task with 50 classes. We developed a hierarchical
classifier that is guided by a layered semantic hierarchy of answers types, and used
it to classify questions into fine-grained classes. Our experimental results show that
the question classification problem can be solved quite accurately (nearly 90 per-
cent accuracy) using a learning approach, and exhibit the benefits of an enhanced
feature representation based on lexical semantic analysis. While the contribution
of syntactic information sources to the process of learning classifiers has been well
studied, we hope that this work can inspire the systematic studies of the contribu-
tion of semantic information to classification.

In an attempt to compare the four semantic information sources, Table 5 presents
the average number of semantic features extracted for a test question in each case.
This gives some indication for the amount of information (in some sense, that is also
the noise level) added by each of the sources. Among the four semantic information
sources, named entity recognition is the only context sensitive semantic analysis of
words. All the other three sources add noise to the representation of a question due
to lack of sense disambiguation.

However, confined by the insufficient coverage of semantic categories and words,
and also the recognition accuracy, named entities contribute the least to the classi-
fication. On the contrary, the class-specific word lists (SemCSR), and similar word
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lists (SemSWL) have much larger coverage and SemCSR has a more direct connec-
tion between words and question classes. Although we cannot get to the conclusion
that the noise does not degrade the performance in the learning process, clearly the
coverage is a more important factor in deciding the classification quality — another
evidence of the advantage of learning in classification.

Feature Type avg. # of features

NE 0.23
SemWN 16
SemCSR 23
SemSWL 557

Table 5. The average number of semantic features extracted for each test question
based on different types of semantic features. For example, there are 16 SemWN
features extracted for each question on average.

The question classifier introduced in this paper has already been incorporated
into our practical question answering system (Roth et al. 2002) to provide wide
support to later processing stages, such as passage retrieval and answer selection
and verification. We hope to evaluate quantitively the contribution of the question
classifiers to this system when it reaches a relatively mature status. Another step in
this line of work would be to improve the selection of the semantic classes using con-
text sensitive methods for most of the semantic information sources and to enlarge
the coverage of the named entity recognizer. The third direction is to incorporate
question classes with other analysis results to form an abstract representation of
question information, providing comprehensive constraints over possible answers.
Furthermore, we hope to extend this work to support interactive question answer-
ing. In this task, the question answering system could be able to interact with users
to lead to more variations of questions but with more contextual information. It
may require even larger coverage of semantic classes and more robustness, and a
strategy that is more adaptive to the answer selection process.
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